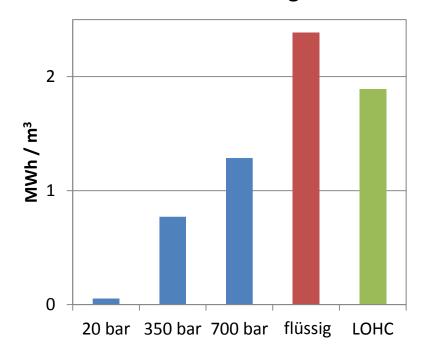
DEZENTRALE GAS-STROM-KOPPLUNG UNTER NUTZUNG EINES FLÜSSIGEN WASSERSTOFFTRÄGERS (LOHC)

Johannes Geiling, Richard Öchsner

Vortrag auf den Berliner Energietagen 2019

© Fraunhofer IISB



Bilder: Kurt Fuchs / Fraunhofer IISB

Warum LOHC (Liquid Organic Hydrogen Carrier)?

Volumetrische Energiedichte

LOHC: Dibenzyltoluol

- + Hohe volumetrische Energiedichte (bis zu 1,9 MWh / m³)
- + Sichere Speicherung von Wasserstoff im flüssigen Träger bei Umgebungsdruck und Umgebungstemperatur
- + Einfache Transportierbarkeit
- + Kommerzielle Verfügbarkeit des Trägermaterials (Einsatz als Thermalöl in der Industrie)

Unbeladener LOHC

$$+9H_2$$

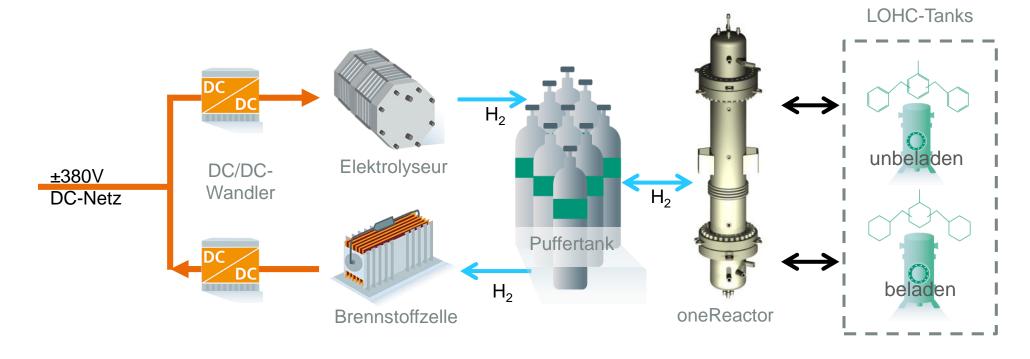
Hydrierung: Einspeicherung von H₂ Dehydrierung: Freisetzung von H₂

Beladener LOHC

Demonstrationsanlage (1)

- Kompletter Systemaufbau für Einund Ausspeicherung elektrischer Energie in 20 Fuß-Container
- Technische Daten:
 - ± 25 kW_{elektrisch}
 - 600 kWh_{Wasserstoff}
- Weltweit einzigartiger Technologiedemonstrator
- Inbetriebnahme 2018
- Kooperation zwischen Fraunhofer und Universität Erlangen-Nürnberg

LOHC-Container am Fraunhofer IISB in Erlangen Bild: Kurt Fuchs / Fraunhofer IISB



Demonstrationsanlage (2)

Prozess

© Fraunhofer IISB

- Einsatz der PEM (Polymer Elektrolyt Membran)-Technologie für Brennstoffzelle und Elektrolyseur
- Hydrierung und Dehydrierung des LOHC innerhalb des sogenannten "oneReactor" → Novum
- Anbindung an DC-Netz durch effiziente DC/DC-Wandler (entwickelt und gebaut am Fraunhofer IISB)

Demonstrationsanlage (3)

Blick in den LOHC-Container

Elektrolyseur 25 kW_{el}

oneReactor

Brennstoffzelle 25 kW_{el}

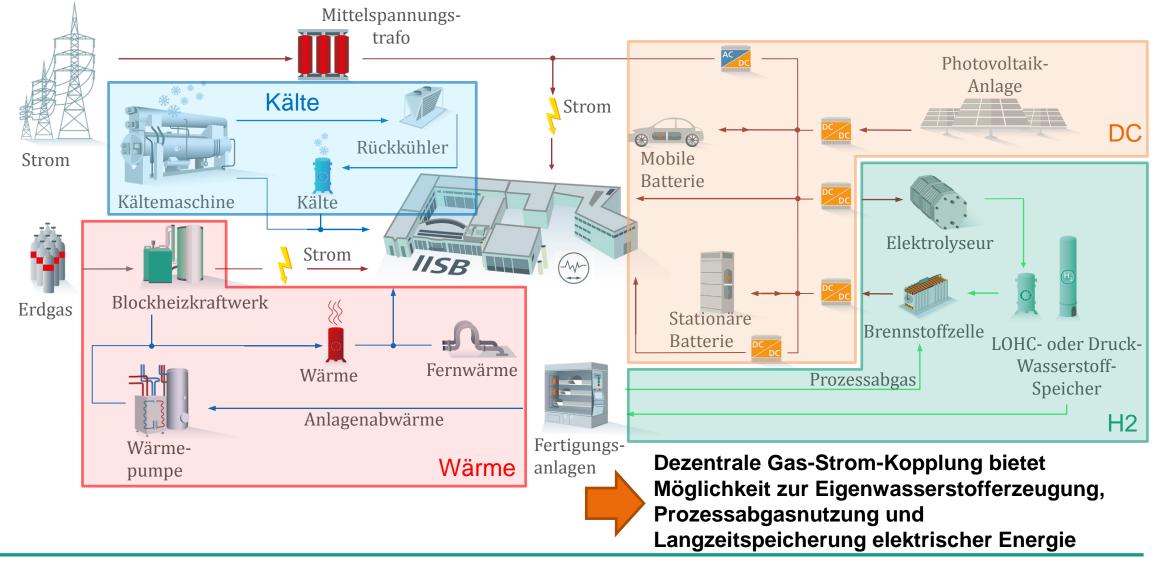
LOHC-Tanks 300 Liter

Bild: Kurt Fuchs / Fraunhofer IISB

Integration in dezentrales Industrienetz

Anschluss an lokales Energiesystem (Krankenhäuser, Rechenzentren, Industriebetriebe, Windenergieanlagen,...) Erzeuger Batterien Verbraucher **DC-Netz Speicher**

Skalierbarer, kompakter Langzeitenergiespeicher



Gesamtenergiesystem am Fraunhofer IISB

Aktuelle Nutzung LOHC-Container

 Beteiligung im Forschungsprojekt zu LOHC-basierten Antriebssystemen für Züge unter Federführung des Helmholtz-Instituts Erlangen-Nürnberg

- Untersuchung zur Systemdynamik bei der Ausspeicherung (Dehydrierung + Brennstoffzelle)
 - Experimente + Simulationen
- Laufzeit: 2019 2022

Bild: Kurt Fuchs / Fraunhofer IISB

© Fraunhofer IISB

Bild: Kurt Fuchs / Fraunhofer IISB

