Press Release

CANCEL
  • Fraunhofer IMWS / 2024

    Cooperation for a faster establishment of a hydrogen economy

    August 29, 2024

    Kooperation Fraunhofer KIER
    © Fraunhofer IMWS

    Three Fraunhofer Institutes and the Korean Institute of Energy Research (KIER) want to intensify their exchange on hydrogen, photovoltaics and wind energy topics. To this end, a cooperation agreement was signed today in Halle (Saale). The Fraunhofer Institute for Microstructure of Materials and Systems IMWS, the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Dresden Branch and the Fraunhofer Institute for Wind Energy Systems IWES are involved. The collaboration is intended to support the faster establishment of a hydrogen economy and sustainable energy supply in South Korea and Germany.

    more info
  • © Fraunhofer CSP

    Sustainability and resource efficiency in the photovoltaic industry will have a significant impact on the future of renewable energies. Currently, raw materials and materials are still being used in solar modules that cannot be recycled at all or can only be partially recycled and have weaknesses in terms of environmental compatibility. This is where the recently completed project “E2 - E-Quadrat. Renewable energies from renewable raw materials”. Together with partners, the Fraunhofer Center for Silicon Photovoltaics CSP in Halle (Saale) has developed a solar module in which the components that are not directly required for light-to-electricity conversion are made from biodegradable materials, recyclable materials or renewable raw materials.

    more info
  • © Fraunhofer CSP

    In the highly competitive photovoltaic industry, technical innovations can bring decisive advantages, especially for European market participants. The prerequisites for this are functioning competition and the ability to enforce the protection of intellectual property. This is where the new "IP Protection" project comes in, in which the Fraunhofer Center for Silicon Photovoltaics CSP in Halle (Saale) is researching preparative and analytical methods together with partners in order to be able to provide legally secure evidence of patent infringements.

    more info
  • In order to achieve its goal of decarbonizing raw material flows, the chemical industries must cover their carbon requirements from sustainable sources. The direct capture of CO2 from the air has hardly played a role so far – mainly due to the high investment and operating costs. The partners in the "Air2Chem" project want to change this: They are developing an integrated process that combines the "Direct Air Capture" process with electrolytic conversion of the green carbonate-containing absorber solution into platform raw materials for the chemical industries.

    more info
  • A new joint study by Fraunhofer ISI and Amazon provides critical insights as to the optimal number and location of public fast-charging stations required to enable the widespread electrification of long-haul trucking in Europe. Using traffic flow estimates for 2030, the study built on Amazon’s open-source CHALET tool to analyse 20,000 potential public truck charging locations along the major European highways and a large data set of 1.6 million truck trip combinations. The results suggest that just 1,000 charging stations equipped with Megawatt Charging System (MCS) outlets could enable about 91% of expected long-haul trucking traffic.

    more info
  • Whether grid control and planning, the operational management of photovoltaic systems and storage facilities or their design: These and other tasks require load time series that map the increasingly dynamic consumption of many households far more accurately than standard load profiles. The Fraunhofer Institute for Energy Economics and Energy System Technology IEE and its partners in the SyLas-KI research project have therefore developed an AI-supported tool that can be used to create high-resolution synthetic load time series for numerous different consumers. They are indistinguishable from real measurement data in terms of their characteristics but meet all data protection requirements.

    more info
  • A new Fraunhofer ISI study analysed future cost developments for price-setting components of zero-emission trucks from more than 200 sources. The study findings show that zero-emission trucks will benefit from rapidly falling costs of batteries and fuel cells, which will enable their fast market diffusion and help to achieve national and international climate policy targets. With battery-electric trucks as currently most promising and cost-effective zero-emission technology for most use cases, industry and policy must prepare with respect to their manufacturing, comprehensive charging infrastructure, electricity grid expansion, and regulation.

    more info
  • Wide-bandgap (WBG) semiconductor technology and artificial intelligence together are revolutionizing power electronics. A new class of intelligent power electronic systems is unlocking new performance and application areas. The high demands of system development impact the entire power electronics value chain. Specifically, this applies to semiconductor materials and devices as well as packaging and module technology. Extreme operating and environmental conditions demand maximum reliability and ultra-high performance. At PCIM Europe 2024, Fraunhofer IISB, Fraunhofer ISIT and Fraunhofer IMS together present the entire value chain for next-generation power electronics.

    more info
  • Together with its project partners RWE, ForWind (University of Oldenburg – Institute of Physics), and Helmholtz-Zentrum Hereon, the Fraunhofer Institute for Wind Energy Systems IWES is investigating in the “C²-Wakes – Controlled Cluster Wakes” research project how the total energy yield of offshore wind farms can be optimized. The aim of the project is to utilize an extensive offshore wind measurement campaign and modeling methods to determine if and how large-scale wake effects and the global blockage effect can be reduced in the future. The project is set to make significant contributions to climate change mitigation and ensure reliable and cost-efficient energy supply. To date, little research on this topic has been conducted anywhere in the world. The project is being funded by the German Federal Ministry for Economic Affairs and Climate Action (BMWK) with a total of around €2.86 million.

    more info